Naïve
Bayesian Classification Demo 1
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
from sklearn.datasets import make_blobs
X, y = make_blobs(100, 2, centers=2,
random_state=2, cluster_std=1.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50,
cmap='RdBu');
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X, y);
rng = np.random.RandomState(0)
Xnew = [-6, -14] + [14, 18] *
rng.rand(2000, 2)
ynew = model.predict(Xnew)
ynew
plt.scatter(X[:, 0], X[:, 1], c=y, s=50,
cmap='RdBu')
lim = plt.axis()
plt.scatter(Xnew[:, 0], Xnew[:, 1],
c=ynew, s=20, cmap='RdBu', alpha=0.1)
plt.axis(lim);
yprob = model.predict_proba(Xnew)
yprob[-8:]. round(2)
No comments:
Post a Comment