#Data Pre-processing Step
#
importing libraries  
import
numpy as nm  
import
matplotlib.pyplot as mtp  
import
pandas as pd  
  
#importing
datasets  
data_set=
pd.read_csv('User_Data.csv')  
  
#Extracting
Independent and dependent Variable  
x=
data_set.iloc[:, [2,3]].values  
y=
data_set.iloc[:, 4].values  
  
# Splitting the
dataset into training and test set.  
from
sklearn.model_selection import train_test_split 
x_train,
x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25,
random_state=0)  
#feature
Scaling  
from
sklearn.preprocessing import StandardScaler   
st_x=
StandardScaler()    
x_train=
st_x.fit_transform(x_train)    
x_test=
st_x.transform(x_test)       
from
sklearn.svm import SVC # "Support vector classifier"  
classifier
= SVC(kernel='linear', random_state=0)  
classifier.fit(x_train,
y_train)  
#Predicting the
test set result  
y_pred=
classifier.predict(x_test) 
#Creating the
Confusion matrix  
from
sklearn.metrics import confusion_matrix  
cm=
confusion_matrix(y_test, y_pred)  
cm
from
matplotlib.colors import ListedColormap  
x_set,
y_set = x_train, y_train  
x1,
x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:,
0].max() + 1, step  =0.01),  
nm.arange(start
= x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))  
mtp.contourf(x1,
x2, classifier.predict(nm.array([x1.ravel(),
x2.ravel()]).T).reshape(x1.shape),  
alpha
= 0.75, cmap = ListedColormap(('red', 'green')))  
mtp.xlim(x1.min(),
x1.max())  
mtp.ylim(x2.min(),
x2.max())  
for
i, j in enumerate(nm.unique(y_set)):  
    mtp.scatter(x_set[y_set == j, 0],
x_set[y_set == j, 1],  
        c = ListedColormap(('red', 'green'))(i),
label = j)  
mtp.title('SVM
classifier (Training set)')  
mtp.xlabel('Age')  
mtp.ylabel('Estimated
Salary')  
mtp.legend()  
mtp.show()  
#Visulaizing the
test set result  
from
matplotlib.colors import ListedColormap  
x_set,
y_set = x_test, y_test  
x1,
x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() - 1, stop = x_set[:,
0].max() + 1, step  =0.01),  
nm.arange(start
= x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))  
mtp.contourf(x1,
x2, classifier.predict(nm.array([x1.ravel(),
x2.ravel()]).T).reshape(x1.shape),  
alpha
= 0.75, cmap = ListedColormap(('red','green' )))  
mtp.xlim(x1.min(),
x1.max())  
mtp.ylim(x2.min(),
x2.max())  
for
i, j in enumerate(nm.unique(y_set)):  
    mtp.scatter(x_set[y_set == j, 0], x_set[y_set
== j, 1],  
        c = ListedColormap(('red',
'green'))(i), label = j)  
mtp.title('SVM
classifier (Test set)')  
mtp.xlabel('Age')  
mtp.ylabel('Estimated
Salary')  
mtp.legend()  
mtp.show()  
                                                          
No comments:
Post a Comment